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Recent experiments and models for the spreading of liquids laden with nanoparticles have demonstrated
particle layering at the three-phase contact line; this is associated with the structural component of the disjoin-
ing pressure. Effects driven by structural disjoining pressures occur on scales longer than the diameter of a
particle, below which other disjoining pressure components such as van der Waals and electrostatic forces are
dominant. Motivated by these experimental observations, we investigate the dynamic spreading of a droplet
laden with nanoparticles in the presence of structural disjoining pressure effects. We use lubrication theory to
derive evolution equations for the interfacial location and the concentration of particles. These equations
account for the presence of the structural component of the disjoining pressure for film thicknesses exceeding
the diameter of a nanoparticle; below such thicknesses, van der Waals forces are assumed to be operative. The
resulting evolution equations, for the particle motion and free surface position, are solved allowing for the
viscosity to vary as a function of nanoparticle concentration. The results of our numerical simulations demon-
strate qualitative agreement with experimental observations of a “step” emerging from the contact line. The
results are also relevant to a wide range of other phenomena involving layering, or terraced spreading of
nanodroplets, or stepwise thinning of micellar thin films.

DOI: 10.1103/PhysRevE.76.056315 PACS number�s�: 47.55.nd

I. INTRODUCTION

The spreading, or thinning, of simple fluids, micellar-, or
particle-laden solutions is often accompanied by complex be-
havior, which manifests itself through “terracing” of the free
surface or stepwise thinning. Several notable examples ap-
pear in the literature: the terraced spreading of nanodroplets
�1,2� showing the advance of the droplet edge as molecular
layers, the stepwise thinning of liquid films of micellar solu-
tions �3–12�, and, more recently, the formation of “steps” in
the detachment of oil droplets by nanoparticle-laden solu-
tions �5,13–16�. There is considerable interest in achieving
fundamental, multiscale understanding of spreading and of
the interaction between the relevant physics at the micro-
scale, which gives rise to the above-mentioned complex,
macroscale phenomena.

The spreading of fluids and, in general, their relationship
to any substrate in which they are in contact, is characterized
by the interfacial tensions and the film energy; this, in turn, is
expressed by the integral over the film thickness of the dis-
joining pressure. The latter is expressed as a combination of
van der Waals, electrostatic, and so-called “structural”
forces, as well as steric forces �17,18�. For simple fluids, van
der Waals forces and electrostatic effects dominate over very
small scales. Stepwise thinning, however, occurs over longer
scales and particle layering is observed even at micron
scales. Using statistical mechanics, models for the structural
component have been developed �14�, and applied to equi-
librium situations �16�. Complementary to this literature on
disjoining pressure are many hydrodynamical studies, based
on thin film theory �19,20�, such as studies of dewetting
phenomena �21,22�, rupture �23–25�, droplet motion on sub-
strates with wettability gradients �26�, and pattern formation
�27,28�. The disjoining pressure embodies the interactions

between the substrate and fluid and enters the dynamical
evolution equations as an energy per unit volume term. How-
ever, to the best of our knowledge, in none of these studies
have structural disjoining pressures been included in the
modeling of thin film dynamics.

The presence of surfactant micellar aggregates or macro-
molecules in thin liquid films or “nanofluids” can have a
drastic effect on the disjoining pressure. In general, the or-
dering of the nanoparticles between two solid surfaces, when
the local film thickness is sufficiently thin to accommodate a
few layers of particles, gives rise to particle layering and
oscillatory, structural disjoining pressures; these dominate
over the shorter range van der Waals and electrostatic forces.
Decreasing the magnitude of the separation between the sur-
faces to less than a particle diameter leads to the expulsion of
the nanoparticles from the gap. This particle depletion
“force,” is entropic in nature, can lead to attraction of the
separated surfaces, and is responsible for phase separation in
colloidal dispersions �14,17,29–33�. Oscillatory structural
forces arise in thin liquid films confined between two smooth
solid surfaces in the absence of nanoparticles; in this case,
these are termed “solvation” forces since the period of oscil-
lations is similar in magnitude to the diameter of a solvent
molecule �32�. These Derjaguin-Landau-Verwey-Overbeek
�DLVO� forces have been shown to play a role in the step-
wise thinning of foams and colloidal dispersions �3–12�, and
particle layering was observed over a range of particle diam-
eters: from 5 nm to 2 �m �6,32�.

Structural forces can influence the spreading of nanofluids
as a result of particle confinement between the air-liquid and
liquid-solid interfaces near the contact line. The effect of
nanoparticles on the structural component of the disjoining
pressure and the spreading process has been investigated in
connection with the detachment of oil drops from solid sub-
strates by surfactant solutions within the context of deter-
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gency �5,13–16�. The range of these forces was found to
greatly exceed that of the van der Waals and electrostatic
components �5,14� and the integrated effect of the structural
component was shown to give rise to an increase in the
spreading coefficient and an enhancement in the spreading
rate of a thin aqueous liquid film that promotes the removal
of the oil droplet �15�.

The oscillatory nature of the structural disjoining pressure
component was also recently taken into account in determin-
ing the equilibrium profile of the meniscus near the three-
phase contact line between the oil and aqueous phases and
the solid substrate �14,16�. Chengara et al. �16� used an ana-
lytical expression for the disjoining pressure, which was de-
veloped by Trokhymchuk et al. �14� for the structural dis-
joining pressure based on the Percus-Yevick theory that
treats both the confining surfaces and the nanoparticles as
hard spheres. This expression accounts for the oscillatory
nature of the disjoining pressure due to particle layering,
with exponential decay for relatively large thicknesses and a
correction which ensured that the Percus-Yevick predictions
are consistent with exact statistical mechanical results �33�
when the film thickness equals the particle diameter. Chen-
gara et al. showed that an increase in nanoparticle concen-
tration and a decrease in the particle diameter and the degree
of polydispersity gave rise to an increase in contact line dis-
placement.

In this paper, we revisit the spreading of nanofluids and
examine the effect of structural disjoining pressure forces on
the dynamics. We use lubrication theory and the rapid verti-
cal diffusion approximation to derive a pair of coupled evo-
lution equations for the thin film thickness and nanoparticle
concentration. We account for structural disjoining pressure
effects using the same expression as that employed by
Trokhymchuk et al. and Chengara et al. �14,16� for film
thicknesses greater than or equal to a particle diameter; for
small thicknesses, we include van der Waals forces in our
description of the disjoining pressure and neglect depletion
forces. We focus on the dynamics of an “inner region” near
the contact line and obtain numerical solutions of the evolu-
tion equations over a wide range of system parameters. We
begin by formulating and generating a model for a nanopar-
ticulate laden droplet in Sec. II, with the results from the
modeling discussed in Sec. III. The emergence of a foot from
the base of the droplet is reminiscent of the terracing often
seen in nanodroplet spreading; we consider this as a further
example in Sec. III C showing that the terraced structure
emerges naturally during the dynamic evolution. We draw to
a close with a summary of the results and a discussion of
how they relate to some related topics in Sec. IV.

II. FORMULATION

A. Governing equations

We consider a thin film of characteristic thickness H and
length L �the initial droplet radius� containing monodisperse
nanoparticles of diameter d. The viscosity of the film is de-
pendent on the particles’ concentration �, and is expressed
by the Krieger-Dougherty relationship, �=�0�1−� /�m�−2,
for relatively large concentrations ��m being the concentra-

tion at close packing� and �=�0�1+� /2� for dilute disper-
sions where �0 is the viscosity of the fluid. Alternatively, for
relatively large concentrations, we also use �=�0�̄���
where �̄ corresponds to a concentration dependence, which
represents the recently observed tendency of nanoparticles to
lower the viscosity of some particulate suspensions �34�. We
use a rectangular coordinate system to describe the two-
dimensional film dynamics, �x ,z�, where x and z correspond
to the horizontal and vertical coordinates, respectively; u
= �u ,w� is the velocity field in which u and w correspond to
its horizontal and vertical components. The film is bounded
from below by a solid, rigid, impermeable, and horizontal
support, located at z=0, and from above by an essentially
inviscid gas; the gas-liquid interface is located at z=h and
this is endowed with a tension �, taken to be constant.

We use lubrication theory to study the film dynamics,
which exploits the fact that the film aspect ratio is small, �
�H /L�1 and that inertia is irrelevant. The mass and mo-
mentum conservation equations in this limit are

ux + wz = 0, �p − ��x = �����uz�z, pz = 0, �1�

where we have neglected gravitational effects. In Eq. �1�, p
denotes the film pressure due to capillary forces and � is the
disjoining pressure, which will be taken to be � dependent,
that will incorporate the structural component. Note that the
osmotic contribution to the film pressure P which arises due
to the presence of the particles is kept separate; this can enter
the problem through its contribution to �, as will be shown
below. The boundary conditions imposed at the substrate are
no-slip and no-penetration at the solid wall: u=w=0, at z
=0; tangential and normal stress conditions at z=h, which, in
the lubrication approximation, reduce to

uz = 0, p = p0 − �hxx, �2�

where p0 is the pressure in the overlying gas phase; finally
there is the kinematic boundary condition, which is ex-
pressed by

ht + ��
0

h

udz�
x

= 0. �3�

In order to model intermolecular interactions, we follow
an approach recently employed in �14,16�, that accounts for
the effect of nanoparticles and their confinement on the dis-
joining pressure in thin films. If the film is sufficiently thick
to accommodate several layers of particles, then the layered
configuration adopted by the particles gives rise to a disjoin-
ing pressure that is oscillatory, and decays, in the local film
thickness. Such oscillatory pressures emerge naturally from
statistical mechanics �35� when formally considering the in-
teractions between surfaces separated by model fluids. In the
present work, we shall use the following form for the dis-
joining pressure �:

��h� = �0 cos��h + �2�e−�h + �1e−	�h−d�, for h 
 d,

= − P +
A

6�h3 + 64n0kT�2e−
h, for 0 � h � d , �4�

where we have included van der Waals and electrostatic con-
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tributions to the disjoining pressure in addition to depletion
forces for 0�h�d since they would be present even in the
absence of particles. Equation �4�, bar the van der Waals and
electrostatic components, is the model of Trokhymchuk et al.
�14�. The various coefficients in this model are derived in
Ref. �14� wherein its connections to earlier statistical me-
chanics and simulations are described. In Eq. �4�, ���� is a
frequency, and �1���=�kTZ− P−�0c2 in which �
=6� /�d3 is the number density of the particles; T is the
�constant� system temperature �the film is in thermal equilib-
rium with its surroundings�, Z=e��� is the compressibility
factor wherein �=1 /kT, �� is the excess chemical potential
�here � should not be confused with the viscosity� and k is
the Boltzmann constant; c2=e−�d cos��d+�2� where ���� is
a decay coefficient; 	=�1 /W1 in which W1=−2�s−W0c1,
where �s��� represents the liquid-solid interfacial tension
and c1=e−�d cos��d+�1�; �0���, W0���, �1���, and �2���
are �-dependent coefficients; A is the Hamaker constant, n0
is the bulk concentration of a 1:1 electrolyte; �
=tanh�e� /4kT� in which e is the electronic charge and � is
the surface potential of the air-liquid and liquid-solid inter-
faces; 
 is an inverse Debye length.

The dynamics of the particle concentration � are gov-
erned by a convective-diffusion equation, which is expressed
by

�t + u�x + w�z = D��xx + �zz� , �5�

in which D is the diffusion coefficient of the nanoparticles.
Next, we exploit the slenderness of the film to derive evolu-
tion equations that govern its dynamics.

B. Scaling and cross-sectional averaging

It is advantageous to render the governing equations di-
mensionless using the following scalings: x=Lx̃, �z ,h�
=H�z̃ , h̃�, t= �L /U�t̃, �p , P ,��=�2�� /H��p̃ , P̃ ,�̃� where the
tildes have been used temporarily to designate dimensionless
variables and are henceforth suppressed; here, U=�3� /�0
represents a characteristic velocity. The dimensionless con-
vective diffusion equation governing the evolution of � is
then given by

�t + u�x + w�z =
1

�2 Pe
��zz + �2�xx� , �6�

where Pe�UL /D is a Peclet number characterizing the im-
portance of convective versus diffusive effects. We shall con-
sider �2 Pe�1, which assumes that the fluid layer is so thin
that vertical concentration gradients of particles are, to lead-
ing order, not important and substitute ��x ,z , t�=�0�x , t�
+�2 Pe �1�x ,z , t� into Eq. �6�, cf. �36�:

�0t + u�0x =
1

Pe
�0xx + �1zz + O��2 Pe� . �7�

Here, the cross-sectional average of �1�x ,z , t� is taken to be
zero: �1 /h�	0

h�1dz=0. The boundary conditions on � are
�z=0 at z=0 and n ·��z=0 where n= �−hx ,1� / �1+hx

2�1/2 is
the outward pointing unit normal from the gas-liquid inter-
face; the latter condition can be rewritten as

�z − �2hx�x = 0,

Pe �1z − hx�0x = 0, at z = h; �8�

whence �1z
h=hx�0x /Pe. Thus an evolution equation for
�0�x , t� can be constructed as

�0t = −
h2

3�̄��0�
�0x�hxx + ��x +

1

Pe

�h�0x�x

h
. �9�

The x component of the momentum conservation equation
can be readily integrated and the boundary conditions ap-
plied to give the following expression for u:

u = −
1

�̄��0�
�hxx + ��x� z2

2
− zh� , �10�

where � is now replaced by �0 to leading order. Substitution
of Eq. �10� into the dimensionless version of Eq. �3� yields
an evolution equation for the film thickness:

ht = − � h3

3�̄��0�
�hxx + ��x�

x

, �11�

in which the dimensionless disjoining pressure is given by

� = C��̄0 cos��̄
h

�
+ �2�e−�̄h/� + �̄1e−	̄�h−��/��, for h 
 �,

= − C6�0

�
P̄ +

A
h3 + Be−
̄h, for 0 � h � � , �12�

where ��d /H is a dimensionless particle diameter, A
�A / �6��2�H2�, B�64n0kT�2H /�2�, and C�kTH /�2�d3

represent dimensionless parameters that reflect the relative
significance of van der Waals, electrostatic, and structural

disjoining pressures forces and 
̄�
H is a dimensionless
inverse Debye length. The remaining functions in Eqs. �12�,
�̄0��0�, �̄��0�, �2��0�, �̄��0�, �̄1��0�, 	̄��0�, and P̄��0� and
their functional dependence on �0 are given in the Appendix.

Equations �9� and �11� govern the dynamics of the
nanoparticulate-laden film; the “0” subscript for the leading
order particulate concentration �0 is suppressed henceforth.

C. “Inner” region

In the absence of the disjoining pressure a droplet at equi-
librium, in this dimensionless formulation, has a profile h
= �1−x2�. Implicit in this is an assumption of how the length
scales H ,L relate to the contact angle, i.e., �
2��1, cf.
�37,38�. The contact line is at x= ±1 and our main focus is on
its dynamics if structural disjoining pressures are present.
Hence we move to the vicinity of the contact line using the
following rescalings:

h = �ĥ, x = 1 + �x̂, t = �t̂, � =
�̂

�
, A = �2Â,

B =
B̂
�

, C =
Ĉ
�

, Pe =
Pê

�
, 
̄ =


̂

�
. �13�
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Thus the droplet becomes locally linear, ĥ
−2x̂ for x̂�0,
which will essentially provide the initial condition for the
numerical work below.

Substitution of these rescalings into Eqs. �11� and �9�
yields

ĥt̂ = − � ĥ3

3�̄���
�ĥx̂x̂ + �̂�x̂�

x̂

, �14�

�t̂ = −
ĥ2

3�̄���
�x̂�ĥx̂x̂ + �̂�x̂ +

1

Pê

�ĥ�x̂�x̂

ĥ
, �15�

where �̂ is given by

�̂ = Ĉ��̄0 cos��̄ĥ + �2�e−�̄ĥ + �̄1e−	̄�ĥ−1��, for ĥ � 1

= − Ĉ
6�

�
P̄ +

Â

ĥ3
+ B̂e−
̂ĥ, for 0 � ĥ � 1. �16�

Estimates of the magnitudes of the dimensionless groups
that appear in Eqs. �14�–�17� are provided in Table I. Inspec-
tion of this table reveals that the magnitude of electrostatic
forces is small and they will be neglected in the remainder of
this paper. In Fig. 1�a�, we show the effect of varying the
particle concentration on the structural component of the dis-
joining pressure. Clearly, increasing � leads to the formation

of a more pronounced peak at ĥ=1, oscillations of larger
amplitude and longer decay length, and an increase in the
magnitude of depletion forces, as expected. A comparison of
the van der Waals and structural disjoining pressure compo-
nents is shown in Fig. 1�b�. Increasing the value of the re-
duced Hamaker constant leads to a concomitant increase in
the magnitude of the van der Waals component and its decay
length. Also noteworthy is the subdominance of the depletion
forces in relation to the van der Waals interactions over the

range 0� ĥ�1, which is accentuated with decreasing ĥ. The

depletion component of the disjoining pressure for 0� ĥ
�1 is therefore neglected and is not used to generate the
results discussed in the following section. Note that the val-

ues of Â and Ĉ used to plot the curves shown in Fig. 1 are
chosen to be in the middle of the range of the values listed in
Table I. We turn our attention to the discussion of the results.
Note that the hat decoration is suppressed for the remainder
of this paper with the understanding that reference will be
made to the rescaled variables.

TABLE I. Magnitude estimates for the dimensionless groups
based on the following values for the various physical parameters:
�=0.04−0.072 N /m, H=0.1−2�10−6 m, d=10−50�10−9 m, A
=0.1−5�10−20 J, D=0.01−1�10−9 m2 /s, n0=0.01 M, �
=0.03 V, �=0.01, T=293 K, e=1.60�10−19 C, k=1.38
�10−23 J /K.

Description Definition Range

Reduced particle diameter �= d
H 0.005–0.5

Structural disjoining
pressure parameter

Ĉ� kT
�2�d2

0.005–20.2

van der Waals parameter Â� A

6��2�d2
0.02–66.3

Electrostatic parameter B̂�
64n0kT�2d

�2�
10−25–10−24

Peclet number Pê� �2�d
�0D

0.04–35
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FIG. 1. Parametric dependence
of the spatial variation of the
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and a comparison of the spatial
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and structural �generated with

Ĉ=10� components �b�.
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III. RESULTS

A. Numerical procedure

The evolution equations are solved using a numerical pro-
cedure that employs the finite-difference approximation to
discretize the spatial derivatives: Centered differences are
used over the whole of the computational domain except for
the end points where one-sided differences are utilized. Typi-
cally, 5000 grid points are used to carry out the computa-
tions. Numerical solutions were obtained starting from the
following initial condition:

h�x,0� = 1 − 2x + h�, ��x,0� = �o for − Ll � x � 0.5,

h�x,0� = h�, ��x,0� = 0 for 0.5 � x � Lr,

�17�

where Ll=5 and Lr=200. This is the linear initial profile in h
with an offset in x so that a single particle depth �h=1� is at
x
0; also present is a small constant h�. Equation �17� mod-
els the situation in which the contact line region is repre-
sented by a particles-laden fluid wedge. The contact line sin-
gularity at the edge of this region is relieved by using a
precursor layer of thickness h�, which is assumed to be de-
void of particles. The value of h�=0.01 is fixed for all the
computations presented in this paper. Solutions are obtained
subject to the following boundary conditions:

hx�− Ll,t� = − 2, h�Lr,t� = h�,

hxxx�− Ll,t� = 0, hxxx�Lr,t� = 0,

�x�− Ll,t� = 0, �x�Lr,t� = 0,

�18�

for 0��o�0.4, 0� Ĉ�15, 1�Pe�10, and Â=0.5.
In this study, since the particulate phase influences the

viscosity we shall take �̄= �1+� /2� for 0���0.1. For �
�0.1, we shall either use the Krieger-Dougherty relation-
ship, �̄kD= �1−� /�m�−2 for 0.1����m with �m=0.64, or
�̄fit=1−304.18�6+360.13�5+102.65�4−274.93�3

+111.85�2−14.35�, which represents a fit of the viscosity
dependence on the concentration in the work of MacKay et
al. �34� that shows that the addition of nanoparticles can in
certain cases decrease the suspension viscosity.

B. Spreading of a nanoparticulate drop

In Fig. 2, we show the spatiotemporal evolution of the
film thickness h and the local particle mass h� with

�o=0.25, Ĉ=10, Â=0.5, and Pe=10. It is clearly seen that
the spreading process is accompanied by the formation of a
well-pronounced step, which appears to grow at the “foot” of
the advancing wedge close to h=1. This feature is brought
about by the structural component of the disjoining pressure,
due to the presence of nanoparticles in the film, which is
particularly significant at h=1, as shown in Fig. 1. Below
h=1, where a single layer of particles is present, structural
disjoining pressure effects are absent and van der Waals
forces are dominant. These forces are responsible for the
decay in the film thickness from h=1 to h=h�. The local
particle mass, shown in Fig. 2�b�, has a very similar shape to
h. Only h profiles will therefore be presented henceforth.

We have also examined the effect of varying � on the
structure of the film thickness near the edge of the spreading
drop. In Fig. 3�a�, we show h profiles for �� �0,0.35� with
the rest of the parameters remaining unchanged from Fig. 2.
Inspection of Fig. 3�a� reveals that increasing �o, which cor-
responds to an increase in the relative significance of the
structural component of the disjoining pressure, leads to the
formation of more pronounced steps; this is in contrast to the
situation in the absence of particles, �=0: In this case, the
spreading is dominated solely by van der Waals forces and
proceeds in the absence of step formation.

In order to measure the rate of the spreading process, we
introduce the following integral measure:

0.95M = �
Ll

xf

hdx , �19�

where xf is defined as the spatial location at which 0.95 of
the total mass of liquid, M �	Ll

Lrhdx, is recovered. In Fig.
3�b�, we show the temporal evolution of xf for the same
parameter set as that used to generate Fig. 2; in particular,
�̄KD was used to characterize the dependence of the viscosity
on particle concentration. It is clearly seen that increasing �o
leads to a decrease in the spreading rate, which is clearly
caused by an increase in the viscosity due to the presence of
the nanoparticles as dictated by the Krieger-Dougherty rela-
tion �̄KD. At early times, however, the spreading rate associ-
ated with �=0.05 was found to be approximately equal to
that in the absence of particles before the particles-induced
viscosity increase led to its reduction. In Fig. 3�c�, we show
an analogous plot to that depicted in Fig. 3�b�, except �̄fit
was used instead of �̄KD. Close inspection of Fig. 3�c� re-
veals that the spreading rate is maximized for an intermedi-

0 10 20 30
0

1

2

3

4

5

6

7

x

h

(a)

0 10 20 30
0

0.5

1

1.5

2

x

h×
φ

(b)
FIG. 2. Spatiotemporal volu-

tion of the film thickness �a� and
local particle mass �b� for �̄

= �̄KD, �o=0.25, Ĉ=10, Â=0.5,
Pe=10, and t=0.28, 2.8, 14, 36.4,
61.6, 98, 140; the arrows indicate
the direction of increasing time
and the dotted line in panel �a� de-
marcates the locus of points for
which a single layer of particles is
present.
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ate value of �o, �o=0.15 for the present set of parameters,
and this is related to the lubricating effect of the nanopar-
ticles, which act to reduce the viscosity �34�. A similar effect
was recently observed in the forced spreading of thin films
containing nanoparticles �39�. The spreading loosely follows
a power-law-like behavior which is characterized by an ex-
ponent whose value approaches unity at intermediate times
and decreases towards 0.5 with increasing �o.

We have also explored the effect of varying Ĉ on the

dynamics. Increasing Ĉ was found to increase the spreading
rate marginally without introducing qualitatively new fea-
tures to the structure of the film thickness �not shown�.

C. Terraced spreading of nanodroplets

An interesting and important feature of spreading is the
emergence of a precursor layer from the edge of a droplet
spreading on a wetting substrate and the “terracing” that is
often also observed. Experiments on nanodroplets by Heslot
et al. �1�, and by later authors �2�, demonstrate that the drop-
let spreads and flattens with a foot of approximately a mo-
lecular thickness emerging from the droplet; transient terrac-
ing events are observed with each terrace being of apparently
equal thickness. We attempt below to replicate these dynamic
phenomena, at least qualitatively, by neglecting the presence
of particles and considering a decaying oscillatory, structural
disjoining pressure of the form

�̂ = Ĉ�̃0 cos��̃h + �2�exp�− �̃ĥ� , �20�

where �̃0, �̃, �2, �̃ are constants; to the best of our knowl-
edge, such an attempt does not appear to have been under-
taken previously within the framework of thin-layer theory.

Relations of the form given by Eq. �20� are commonplace
in studying the stepwise thinning of free films for foams

�40�. Such oscillatory disjoining pressures are a feature of all
fluids, composed of, say, a hard-sphere fluid model of larger
molecules within a suspension of another fluid, or of ionic
fluids �41� or of molecular solvents �17�. Even a seemingly
pure high molecular weight fluid in experiments could be in
this state if small amounts of, for instance, water were ad-
sorbed to form the solvent. Thus one would expect adsorp-
tion of water onto either the substrate or its absorption by the
fluid to have a potentially large effect, as observed experi-
mentally by Villette et al. �42�.

Since the presence of nanoparticles has been neglected in
this part of the present work, d corresponds simply to a rep-
resentative vertical scale of a typical nanodroplet and the
results shown in Fig. 4 are for typical values; here, numerical
solutions are obtained starting from an initial droplet profile
given by h�x ,0�=max�4−x2 ,0�+h� wherein h�=10−2 is,
once again, used to relieve the contact line singularity; we
have found the results to be insensitive to reducing this value
further. As one immediately notes from the evolving h pro-
files and the disjoining pressure plots shown alongside these
in Fig. 4, the terraces form for values of h such that ��h�
=0 and �h�0. One would expect to attain an equilibrium
situation in cases wherein ��h�=0 �or, in the study of “black
hole” formation in foam films, for instance, when ��h�
equals the applied capillary suction pressure �7�, which is
absent in the present case�. However, not all equilibrium
states are stable: if h=h0+h1 exp�ikx+
t�, with h1 /h0�1,
then linearization suggests that the perturbation growth rate

 is 
=−�k4−k2�h� /3�0, provided �h�0; this indicates
that h0 is stable to all perturbations of wave number k pro-
vided �h as expected �43�. The droplet spreads via the for-
mation of a series of descending terraces until only the lead-
ing foot remains; this is reminiscent of the behavior observed
in experiments �1�.
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FIG. 3. �a�: The effect of vary-
ing �o on the structure of the film
thickness at t=100 with �̄= �̄KD.
Log-log plots showing the tempo-
ral variation of xf are depicted in
�b� and �c� generated with �̄
= �̄KD and �̄= �̄fit, respectively.
The dotted lines labeled “0.5” and
“1” in �b� and �c� represent lines
of constant slope equal to 0.5 and
1, respectively. The rest of the pa-
rameter values remain unchanged
from Fig. 2.
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Also shown in Fig. 4 is the edge of the leading terrace,
relative to the initial droplet edge, versus time. This appears
to scale as t0.4 whereas experiments appear to show a t0.5

scaling, albeit for early times and not for all fluids �42�. This
feature has led some authors to view the motion of the ter-
races to be diffusive, although recent experiments �44� sug-
gest otherwise. Nevertheless, it is clear that qualitative fea-
tures of stepwise spreading and terracing can be captured
within the framework of lubrication theory by incorporating
an oscillatory disjoining pressure into equations governing
the dynamics.

IV. CONCLUDING REMARKS

In this paper, we have considered the dynamic spreading
of droplets containing nanoparticles. We have used lubrica-
tion theory to derive evolution equations for the film thick-
ness and particle concentration, which account for the pres-
ence of the structural component of the disjoining pressure.
Our numerical results indicate that the spreading is accom-
panied by the formation of a step at the advancing contact
line, which is in line with recent experimental observations
�15�. Our results also show that, by accounting for the po-
tentially lubricating effect of the particles �34�, the spreading
rate is maximized for an intermediate value of the particle
concentration; this is in agreement with recent experimental
observations by one the authors �39�. We have also examined
the possibility of replicating qualitatively the terracing phe-
nomenon that has been observed to accompany the spreading
of droplets �1�. Our numerical solutions of the film thickness
equation with a decaying, oscillatory disjoining pressure
��h� bear structural resemblance to experimental observa-
tions. We show that thickness of the terraces corresponds to
the zeros of the oscillatory dependence of ��h�, provided
�h�0, which guarantees stability.

The aim of our modeling has been to highlight features
that dynamically appear provided structural disjoining pres-
sures are introduced, and to begin to explore whether these
models offer the possibility that terracing and step propaga-

tion can be captured within a continuum description. It is
worthwhile to comment further upon the model, and its limi-
tations. In the nanoparticulate droplet case, we have rescaled
to the edge of the droplet and assumed that vertical diffusion
is so rapid that the concentration is only a function of the
horizontal coordinate which, in the neighborhood of the
droplet edge, is a reasonable first approximation; clearly this
could be modified at the expense of solving a two-
dimensional convective-diffusion equation for the concentra-
tion to account for variations in the vertical direction. The
modeling can be generalized in order to study the spreading
of particle-laden polymeric fluids; the viscosity model of
�34� is indeed for such fluids and is used here to demonstrate
that one can have a nonmonotonic spreading rate behavior on
particle concentration. Another limitation is that we have im-
plicitly assumed that the substrate is hydrophilic by using a
precursor layer as a numerical device to relieve the contact
line singularity; this too could be overcome by adjusting the
disjoining pressure further to mimic a contact angle at the
edge of advancing step. Finally, the numerical simulations
have all been in Cartesian geometry, local to the edge of a
large droplet; this clearly captures the leading order behavior.
For nanodroplets, it is less clear that this is so, and the mod-
eling could be generalized to this too; indeed we did so, but
for the sake of brevity do not show the results as they add
nothing new to the thrust of this paper.

APPENDIX: CONSTANTS APPEARING IN EQ. (12)

Here, we provide details of the functional dependence of
the various coefficients in Eq. �4� on � �14�:

��� = �
�8 − 9� + 3�2�

�1 − ��3 � F̄��� , �A1�

P = �kT
�1 + � + �2 − �3�

�1 − ��3 �
kT

d3

6�

�
P̄��� , �A2�
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FIG. 4. Numerical simulation of “terraced spreading.” �a� The variation of the disjoining pressure ��h�, given by Eq. �20�, and �h with

h; �b� terrace formation in h for t=1, 10, 100 with Ĉ�̃0=100, �2=−� /2, �=4� ,�=0.1 the dotted lines are those values of h for which
��h�=0, �h�h��0; �c� the temporal variation of the leading front xf relative to the initial location of the droplet edge. Here, the dotted line,
which has a slope of 0.4, has been included for comparison with xf −2
 t0.4 power-law behavior.
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�0 =
kT

d3 �4.06281 − 3.10572� + 76.67�2� �
kT

d3 �̄0��� ,

�A3�

� =
4.78366 − 19.64378� + 37.379�2 − 30.59647�3

d

�
�̄���

d
, �A4�

� =
4.45160 + 7.10586� − 8.30671�2 + 8.29751�3

d
�

�̄���
d

,

�A5�

�2 = − 0.39687 − 0.3948� + 2.3027�2, �A6�

�s = −
9kT

2�d2�2 �1 + ��
�1 − ��3 � = −

kT

d2 �̄s, �A7�

�1 = 0.40095 + 2.10336� , �A8�

W0 =
kT

d2 �0.57909 + 0.83439� + 8.65315�2� �
kT

d2 W̄0,

�A9�

�1 =
kT

d3 �6�

�
�eF̄ − P̄� − �̄0e−�̄ cos��̄ + �2�� �

kT

d3 �̄1,

�A10�

	 =
�̄1

d�2�̄s − W̄0e−�̄ cos��̄ + �1��
�

	̄
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